Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(12): e0160123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014956

RESUMO

IMPORTANCE: Aerobic methanotrophs play a critical role in the global carbon cycle, particularly in controlling net emissions of methane to the atmosphere. As methane is a much more potent greenhouse gas than carbon dioxide, there is increasing interest in utilizing these microbes to mitigate future climate change by increasing their ability to consume methane. Any such efforts, however, require a detailed understanding of how to manipulate methanotrophic activity. Herein, we show that methanotrophic activity is strongly controlled by MmoD, i.e., MmoD regulates methanotrophy through the post-transcriptional regulation of the soluble methane monooxygenase and controls the ability of methanotrophs to collect copper. Such data are likely to prove quite useful in future strategies to enhance the use of methanotrophs to not only reduce methane emissions but also remove methane from the atmosphere.


Assuntos
Methylosinus trichosporium , Methylosinus trichosporium/genética , Oxigenases/genética , Metano , Cobre
2.
Environ Microbiol ; 25(11): 2338-2350, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395163

RESUMO

Copper plays a critical role in controlling greenhouse gas emissions as it is a key component of the particulate methane monooxygenase and nitrous oxide reductase. Some methanotrophs excrete methanobactin (MB) that has an extremely high copper affinity. As a result, MB may limit the ability of other microbes to gather copper, thereby decreasing their activity as well as impacting microbial community composition. Here, we show using forest soil microcosms that multiple forms of MB; MB from Methylosinus trichosporium OB3b (MB-OB3b) and MB from Methylocystis sp. strain SB2 (MB-SB2) increased nitrous oxide (N2 O) production as well caused significant shifts in microbial community composition. Such effects, however, were mediated by the amount of copper in the soils, with low-copper soil microcosms showing the strongest response to MB. Furthermore, MB-SB2 had a stronger effect, likely due to its higher affinity for copper. The presence of either form of MB also inhibited nitrite reduction and generally increased the presence of genes encoding for the iron-containing nitrite reductase (nirS) over the copper-dependent nitrite reductase (nirK). These data indicate the methanotrophic-mediated production of MB can significantly impact multiple steps of denitrification, as well as have broad effects on microbial community composition of forest soils.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Cobre , Óxido Nitroso , Methylocystaceae/genética , Methylosinus trichosporium/genética , Nitrito Redutases , Solo
3.
Appl Environ Microbiol ; 89(1): e0141322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645275

RESUMO

Two methanol dehydrogenases (MDHs), MxaFI and XoxF, have been characterized in methylotrophic and methanotrophic bacteria. MxaFI contains a calcium ion in its active site, whereas XoxF contains a lanthanide ion. Importantly, the expression of MxaFI and XoxF is inversely regulated by lanthanide bioavailability, i.e., the "lanthanide switch." To reveal the genetic and environmental factors affecting the lanthanide switch, we focused on two Methylosinus trichosporium OB3b mutants isolated during routine cultivation. In these mutants, MxaF was constitutively expressed, but lanthanide-dependent XoxF1 was not, even in the presence of 25 µM cerium ions, which is sufficient for XoxF expression in the wild type. Genotyping showed that both mutants harbored a loss-of-function mutation in the CQW49_RS02145 gene, which encodes a TonB-dependent receptor. Gene disruption and complementation experiments demonstrated that CQW49_RS02145 was required for XoxF1 expression in the presence of 25 µM cerium ions. Phylogenetic analysis indicated that CQW49_RS02145 was homologous to the Methylorubrum extorquens AM1 lanthanide transporter gene (lutH). These findings suggest that CQW49_RS02145 is involved in lanthanide uptake across the outer membrane. Furthermore, we demonstrated that supplementation with cerium and glycerol caused severe growth arrest in the wild type. CQW49_RS02145 underwent adaptive laboratory evolution in the presence of cerium and glycerol ions, resulting in a mutation that partially mitigated the growth arrest. This finding implies that loss-of-function mutations in CQW49_RS02145 can be attributed to residual glycerol from the frozen stock. IMPORTANCE Lanthanides are widely used in many industrial applications, including catalysts, magnets, and polishing. Recently, lanthanide-dependent metabolism was characterized in methane-utilizing bacteria. Despite the global demand for lanthanides, few studies have investigated the mechanism of lanthanide uptake by these bacteria. In this study, we identify a lanthanide transporter in Methylosinus trichosporium OB3b and indicate the potential interaction between intracellular lanthanide and glycerol. Understanding the genetic and environmental factors affecting lanthanide uptake should not only help improve the use of lanthanides for the bioconversion of methane into valuable products like methanol but also be of value for developing biomining to extract lanthanides under neutral conditions.


Assuntos
Oxirredutases do Álcool , Elementos da Série dos Lantanídeos , Methylosinus trichosporium , Oxirredutases do Álcool/metabolismo , Cério/metabolismo , Glicerol , Elementos da Série dos Lantanídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Filogenia
4.
mBio ; 13(5): e0223922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36129259

RESUMO

Methanotrophs require copper for their activity as it plays a critical role in the oxidation of methane to methanol. To sequester copper, some methanotrophs secrete a copper-binding compound termed methanobactin (MB). MB, after binding copper, is reinternalized via a specific outer membrane TonB-dependent transporter (TBDT). Methylosinus trichosporium OB3b has two such TBDTs (MbnT1 and MbnT2) that enable M. trichosporium OB3b to take up not only its own MB (MB-OB3b) but also heterologous MB produced from other methanotrophs, e.g., MB of Methylocystis sp. strain SB2 (MB-SB2). Here, we show that uptake of copper in the presence of heterologous MB-SB2 can either be achieved by initiating transcription of mbnT2 or by using its own MB-OB3b to extract copper from MB-SB2. Transcription of mbnT2 is mediated by the N-terminal signaling domain of MbnT2 together with an extracytoplasmic function sigma factor and an anti-sigma factor encoded by mbnI2 and mbnR2, respectively. Deletion of mbnI2R2 or excision of the N-terminal region of MbnT2 abolished induction of mbnT2. However, copper uptake from MB-SB2 was still observed in M. trichosporium OB3b mutants that were defective in MbnT2 induction/function, suggesting another mechanism for uptake copper-loaded MB-SB2. Additional deletion of MB-OB3b synthesis genes in the M. trichosporium OB3b mutants defective in MbnT2 induction/function disrupted their ability to take up copper in the presence of MB-SB2, indicating a role of MB-OB3b in copper extraction from MB-SB2. IMPORTANCE Methanotrophs play a critical role in the global carbon cycle, as well as in future strategies for mitigating climate change through their consumption of methane, a trace atmospheric gas much more potent than carbon dioxide in global warming potential. Copper uptake is critical for methanotrophic activity, and here, we show different approaches for copper uptake. This study expands our knowledge and understanding of how methanotrophs collect and compete for copper, and such information may be useful in future manipulation of methanotrophs for a variety of environmental and industrial applications.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Cobre/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Methylocystaceae/genética , Methylocystaceae/química , Methylocystaceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metano/metabolismo
5.
mBio ; 13(3): e0024722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575546

RESUMO

Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase in recent decades. Aerobic methanotrophs, bacteria that use methane as the sole carbon source, are an important biological sink for methane, and they are widely distributed in the natural environment. However, relatively little is known on how methanotroph activity is regulated by nutrients, particularly phosphorus (P). P is the principal nutrient constraining plant and microbial productivity in many ecosystems, ranging from agricultural land to the open ocean. Using a model methanotrophic bacterium, Methylosinus trichosporium OB3b, we demonstrate here that this bacterium can produce P-free glycolipids to replace membrane phospholipids in response to P limitation. The formation of the glycolipid monoglucuronic acid diacylglycerol requires plcP-agt genes since the plcP-agt mutant is unable to produce this glycolipid. This plcP-agt-mediated lipid remodeling pathway appears to be important for M. trichosporium OB3b to cope with P stress, and the mutant grew significantly slower under P limitation. Interestingly, comparative genomics analysis shows that the ability to perform lipid remodeling appears to be a conserved trait in proteobacterial methanotrophs; indeed, plcP is found in all proteobacterial methanotroph genomes, and plcP transcripts from methanotrophs are readily detectable in metatranscriptomics data sets. Together, our study provides new insights into the adaptation to P limitation in this ecologically important group of bacteria. IMPORTANCE Methane is a potent greenhouse gas in the atmosphere, and its concentration has continued to increase steadily in recent decades. In the natural environment, bacteria known as methanotrophs help mitigate methane emissions at no cost to human beings. However, relatively little is known regarding how methane oxidation activity in methanotrophs is regulated by soil nutrients, particularly phosphorus. Here, we show that methanotrophs can modify their membrane in response to phosphorus limitation and that the ability to change membrane lipids is important for methanotroph activity. Genome and metatranscriptome analyses suggest that such an adaptation strategy appears to be strictly conserved in all proteobacterial methanotrophs and is used by these bacteria in the natural environment. Together, our study provides a plausible molecular mechanism for better understanding the role of phosphorus on methane oxidation in the natural environment.


Assuntos
Gases de Efeito Estufa , Methylosinus trichosporium , Bactérias/genética , Ecossistema , Glicolipídeos , Humanos , Lipídeos de Membrana , Metano/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Fosfatos , Fósforo , Proteobactérias/metabolismo
6.
Biomolecules ; 12(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454149

RESUMO

Particulate methane monooxygenase (pMMO), a membrane-bound enzyme having three subunits (α, ß, and γ) and copper-containing centers, is found in most of the methanotrophs that selectively catalyze the oxidation of methane into methanol. Active sites in the pMMO of Methylosinus trichosporium OB3b were determined by docking the modeled structure with ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene. The docking energy between the modeled pMMO structure and ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene was -5.2, -5.7, -4.2, and -3.8 kcal/mol, respectively, suggesting the existence of more than one active site within the monomeric subunits due to the presence of multiple binding sites within the pMMO monomer. The evaluation of tunnels and cavities of the active sites and the docking results showed that each active site is specific to the radius of the substrate. To increase the catalysis rates of methane in the pMMO of M. trichosporium OB3b, selected amino acid residues interacting at the binding site of ethylbenzene, toluene, 1,3-dibutadiene, and trichloroethylene were mutated. Based on screening the strain energy, docking energy, and physiochemical properties, five mutants were downselected, B:Leu31Ser, B:Phe96Gly, B:Phe92Thr, B:Trp106Ala, and B:Tyr110Phe, which showed the docking energy of -6.3, -6.7, -6.3, -6.5, and -6.5 kcal/mol, respectively, as compared to the wild type (-5.2 kcal/mol) with ethylbenzene. These results suggest that these five mutants would likely increase methane oxidation rates compared to wild-type pMMO.


Assuntos
Methylosinus trichosporium , Tricloroetileno , Catálise , Cobre/metabolismo , Metano/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Tolueno/metabolismo , Tricloroetileno/metabolismo
7.
Appl Environ Microbiol ; 88(1): e0179321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669437

RESUMO

Copper is an important component of methanotrophic physiology, as it controls the expression and activity of alternative forms of methane monooxygenase (MMO). To collect copper, some methanotrophs secrete a chalkophore- or copper-binding compound called methanobactin (MB). MB is a ribosomally synthesized posttranslationally modified polypeptide (RiPP) that, after binding copper, is collected by MbnT, a TonB-dependent transporter (TBDT). Structurally different forms of MB have been characterized, and here, we show that different forms of MB are collected by specific TBDTs. Further, we report that in the model methanotroph, Methylosinus trichosporium OB3b, expression of the TBDT required for uptake of a different MB made by Methylocystis sp. strain SB2 (MB-SB2) is induced in the presence of MB-SB2, suggesting that methanotrophs have developed specific machinery and regulatory systems to actively take up MB from other methanotrophs for copper collection. Moreover, the canonical "copper switch" in M. trichosporium OB3b that controls expression of alternative MMOs is apparent if one of the two TBDTs required for MB-OB3b and MB-SB2 uptake is knocked out, but is disrupted if both TBDTs are knocked out. These data indicate that MB uptake, including the uptake of exogenous MB, plays an important role in the copper switch in M. trichosporium OB3b and, thus, overall activity. Based on these data, we propose a revised model for the copper switch in this methanotroph that involves MB uptake. IMPORTANCE In this study, we demonstrate that different TBDTs in the model methanotroph Methylosinus trichosporium OB3b are responsible for uptake of either endogenous MB or exogenous MB. Interestingly, the presence of exogenous MB induces expression of its specific TBDT in M. trichosporium OB3b, suggesting that this methanotroph is able to actively take up MB produced by others. This work contributes to our understanding of how microbes collect and compete for copper and also helps inform how such uptake coordinates the expression of different forms of methane monooxygenase. Such studies are likely to be very important to develop a better understanding of methanotrophic interactions via synthesis and secretion of secondary metabolites such as methanobactin and thus provide additional means whereby these microbes can be manipulated for a variety of environmental and industrial purposes.


Assuntos
Methylosinus trichosporium , Cobre , Imidazóis , Methylosinus trichosporium/genética , Oligopeptídeos , Oxigenases/genética
8.
ISME J ; 16(1): 211-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290379

RESUMO

Aerobic methanotrophy is strongly controlled by copper, and methanotrophs are known to use different mechanisms for copper uptake. Some methanotrophs secrete a modified polypeptide-methanobactin-while others utilize a surface-bound protein (MopE) and a secreted form of it (MopE*) for copper collection. As different methanotrophs have different means of sequestering copper, competition for copper significantly impacts methanotrophic activity. Herein, we show that Methylomicrobium album BG8, Methylocystis sp. strain Rockwell, and Methylococcus capsulatus Bath, all lacking genes for methanobactin biosynthesis, are not limited for copper by multiple forms of methanobactin. Interestingly, Mm. album BG8 and Methylocystis sp. strain Rockwell were found to have genes similar to mbnT that encodes for a TonB-dependent transporter required for methanobactin uptake. Data indicate that these methanotrophs "steal" methanobactin and such "theft" enhances the ability of these strains to degrade methylmercury, a potent neurotoxin. Further, when mbnT was deleted in Mm. album BG8, methylmercury degradation in the presence of methanobactin was indistinguishable from when MB was not added. Mc. capsulatus Bath lacks anything similar to mbnT and was unable to degrade methylmercury either in the presence or absence of methanobactin. Rather, Mc. capsulatus Bath appears to rely on MopE/MopE* for copper collection. Finally, not only does Mm. album BG8 steal methanobactin, it synthesizes a novel chalkophore, suggesting that some methanotrophs utilize both competition and cheating strategies for copper collection. Through a better understanding of these strategies, methanotrophic communities may be more effectively manipulated to reduce methane emissions and also enhance mercury detoxification in situ.


Assuntos
Compostos de Metilmercúrio , Methylosinus trichosporium , Cobre/metabolismo , Imidazóis/metabolismo , Compostos de Metilmercúrio/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oligopeptídeos/metabolismo
9.
Biochemistry ; 60(38): 2845-2850, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34510894

RESUMO

Methanobactins (Mbns) are ribosomally produced, post-translationally modified peptidic natural products that bind copper with high affinity. Methanotrophic bacteria use Mbns to acquire copper needed for enzymatic methane oxidation. Despite the presence of Mbn operons in a range of methanotroph and other bacterial genomes, few Mbns have been isolated and structurally characterized. Here we report the isolation of a novel Mbn from the methanotroph Methylosinus (Ms.) sp. LW3. Mass spectrometric and nuclear magnetic resonance spectroscopic data indicate that this Mbn, the largest characterized to date, consists of a 13-amino acid backbone modified to include pyrazinedione/oxazolone rings and neighboring thioamide groups derived from cysteine residues. The pyrazinedione ring is more stable to acid hydrolysis than the oxazolone ring and likely protects the Mbn from degradation. The structure corresponds exactly to that predicted on the basis of the Ms. sp. LW3 Mbn operon content, providing support for the proposed role of an uncharacterized biosynthetic enzyme, MbnF, and expanding the diversity of known Mbns.


Assuntos
Cobre/metabolismo , Methylosinus/enzimologia , Methylosinus/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Quelantes/química , Cobre/química , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Imidazóis/metabolismo , Metano/metabolismo , Methylosinus/genética , Methylosinus trichosporium/enzimologia , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oligopeptídeos/metabolismo , Óperon/genética , Oxirredução , Peptídeos/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074779

RESUMO

Some methane-oxidizing bacteria use the ribosomally synthesized, posttranslationally modified natural product methanobactin (Mbn) to acquire copper for their primary metabolic enzyme, particulate methane monooxygenase. The operons encoding the machinery to biosynthesize and transport Mbns typically include genes for two proteins, MbnH and MbnP, which are also found as a pair in other genomic contexts related to copper homeostasis. While the MbnH protein, a member of the bacterial diheme cytochrome c peroxidase (bCcP)/MauG superfamily, has been characterized, the structure and function of MbnP, the relationship between the two proteins, and their role in copper homeostasis remain unclear. Biochemical characterization of MbnP from the methanotroph Methylosinus trichosporium OB3b now reveals that MbnP binds a single copper ion, present in the +1 oxidation state, with high affinity. Copper binding to MbnP in vivo is dependent on oxidation of the first tryptophan in a conserved WxW motif to a kynurenine, a transformation that occurs through an interaction of MbnH with MbnP. The 2.04-Å-resolution crystal structure of MbnP reveals a unique fold and an unusual copper-binding site involving a histidine, a methionine, a solvent ligand, and the kynurenine. Although the kynurenine residue may not serve as a CuI primary-sphere ligand, being positioned ∼2.9 Å away from the CuI ion, its presence is required for copper binding. Genomic neighborhood analysis indicates that MbnP proteins, and by extension kynurenine-containing copper sites, are widespread and may play diverse roles in microbial copper homeostasis.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Cinurenina/química , Metaloproteínas/química , Methylosinus trichosporium/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Cinurenina/biossíntese , Cinurenina/genética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Domínios Proteicos
11.
Bioresour Technol ; 335: 125263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34020156

RESUMO

4-Hydroxybutyric acid (4-HB) is a key platform chemical that serves as a precursor in a wide variety of industrial applications including 1,4-butanediol and bioplastics production. In this study, we reconstructed 4-HB biosynthetic pathway including CoA-dependent succinate semialdehyde dehydrogenase and NADPH-dependent succinate semialdehyde reductase in Type II methanotrophs, Methylosinus trichosporium OB3b, to synthesize 4-HB. These engineered strains were able to synthesize 4-HB from methane via tricarboxylic acid cycle. 4-HB synthesis was further improved to 10.5 mg/L by overexpressing phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase genes in M. trichosporium OB3b. We combined the native poly(3-hydroxybutyrate) metabolic pathway and reconstructed 4-HB biosynthetic pathway to synthesize P(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer from structurally unrelated substrate methane as a single carbon source. These engineered strains could synthesize P(3HB-co-4HB) copolymer with 3.08 mol% 4-HB from methane. This study provides several engineering strategies to synthesize polyhydroxyalkanoates and their monomers from methane.


Assuntos
Methylocystaceae , Methylosinus trichosporium , Ácido 3-Hidroxibutírico , Hidroxibutiratos , Metano , Methylosinus trichosporium/genética
12.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948519

RESUMO

Methanotrophic microorganisms are characterized by their ability to oxidize methane. Globally they have a significant impact on methane emissions by attenuating net methane fluxes to the atmosphere in natural and engineered systems, though the populations are dynamic in their activity level in soils and waters. Methanotrophs oxidize methane using methane monooxygenase (MMO) enzymes, and selected subunit genes of the most common MMOs, specifically pmoA and mmoX, are used as biomarkers for the presence and abundance of populations of bacterial methanotrophs. The relative expression of these biomarker genes is dependent on copper-to-biomass ratios. Empirically derived quantitative relationships between methane oxidation biomarker transcript amounts and methanotrophic activity could facilitate determination of methane oxidation rates. In this study, pure cultures of a model type II methanotroph, Methylosinus trichosporium OB3b, were grown in hollow-fiber membrane bioreactors (HFMBR) under different steady-state methane oxidation conditions. Methanotroph biomass (DNA based) and methane oxidation biomarker mRNA transcript amounts were determined using quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR), respectively. Under both copper-present and copper-limited conditions, per-cell pmoA mRNA transcript levels positively correlated with measured per-cell methane oxidation rates across 3 orders of magnitude. These correlations, if maintained across different methanotrophs, could prove valuable for inferring in situ oxidation rates of methanotrophs and understanding the dynamics of their impact on net methane emissions.IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane and have an impact on global net methane emissions. The genes pmoA and mmoX are used as biomarkers for bacterial methanotrophs. Quantitative relationships between transcript amounts of these genes and methane oxidation rates could facilitate estimation of methanotrophic activity. In this study, a strong correlation was observed between per-cell pmoA transcript levels and per-cell methane oxidation rates for pure cultures of the aerobic methanotroph M. trichosporium OB3b grown in bioreactors. If similar relationships exist across different methanotrophs, they could prove valuable for inferring in situ oxidation rates of methanotrophs and better understanding their impact on net methane emissions.


Assuntos
Proteínas de Bactérias/metabolismo , Marcadores Genéticos , Metano/metabolismo , Methylosinus trichosporium/genética , Oxigenases/metabolismo , Transcrição Gênica , Methylosinus trichosporium/enzimologia
13.
Metab Eng ; 59: 142-150, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061966

RESUMO

We engineered a type II methanotroph, Methylosinus trichosporium OB3b, for 3-hydroxypropionic acid (3HP) production by reconstructing malonyl-CoA pathway through heterologous expression of Chloroflexus aurantiacus malonyl-CoA reductase (MCR), a bifunctional enzyme. Two strategies were designed and implemented to increase the malonyl-CoA pool and thus, increase in 3HP production. First, we engineered the supply of malonyl-CoA precursors by overexpressing endogenous acetyl-CoA carboxylase (ACC), substantially enhancing the production of 3HP. Overexpression of biotin protein ligase (BPL) and malic enzyme (NADP+-ME) led to a ∼22.7% and ∼34.5% increase, respectively, in 3HP titer in ACC-overexpressing cells. Also, the acetyl-CoA carboxylation bypass route was reconstructed to improve 3HP productivity. Co-expression of methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii and phosphoenolpyruvate carboxylase (PEPC), which provides the MMC precursor, further improved the 3HP titer. The highest 3HP production of 49 mg/L in the OB3b-MCRMP strain overexpressing MCR, MMC and PEPC resulted in a 2.4-fold improvement of titer compared with that in the only MCR-overexpressing strain. Finally, we could obtain 60.59 mg/L of 3HP in 42 h using the OB3b-MCRMP strain through bioreactor operation, with a 6.36-fold increase of volumetric productivity compared than that in the flask cultures. This work demonstrates metabolic engineering of type II methanotrophs, opening the door for using type II methanotrophs as cell factories for biochemical production along with mitigation of greenhouse gases.


Assuntos
Proteínas de Bactérias , Chloroflexus/genética , Ácido Láctico/análogos & derivados , Engenharia Metabólica , Metano/metabolismo , Methylosinus trichosporium , Oxirredutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
14.
Methods Enzymol ; 605: 335-349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29909832

RESUMO

Methanotrophic bacteria utilize methane as their sole carbon and energy source. Studies of the model Type II methanotroph Methylosinus trichosporium OB3b have provided insight into multiple aspects of methanotrophy, including methane assimilation, copper accumulation, and metal-dependent gene expression. Development of genetic tools for chromosomal editing was crucial for advancing these studies. Recent interest in methanotroph metabolic engineering has led to new protocols for genetic manipulation of methanotrophs that are effective and simple to use. We have incorporated these newer molecular tools into existing protocols for Ms. trichosporium OB3b. The modifications include additional shuttle and replicative plasmids as well as improved gene delivery and genotyping. The methods described here render gene editing in Ms. trichosporium OB3b efficient and accessible.


Assuntos
Edição de Genes/métodos , Engenharia Metabólica/métodos , Methylosinus trichosporium/metabolismo , Edição de Genes/tendências , Regulação Bacteriana da Expressão Gênica , Técnicas de Transferência de Genes , Técnicas de Genotipagem/métodos , Engenharia Metabólica/tendências , Redes e Vias Metabólicas/genética , Methylosinus trichosporium/genética , Mutagênese Sítio-Dirigida/métodos , Plasmídeos/genética
15.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29668305

RESUMO

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostase , Imidazóis/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Óperon , Transporte Proteico
16.
Science ; 359(6382): 1411-1416, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29567715

RESUMO

Metal homeostasis poses a major challenge to microbes, which must acquire scarce elements for core metabolic processes. Methanobactin, an extensively modified copper-chelating peptide, was one of the earliest natural products shown to enable microbial acquisition of a metal other than iron. We describe the core biosynthetic machinery responsible for the characteristic posttranslational modifications that grant methanobactin its specificity and affinity for copper. A heterodimer comprising MbnB, a DUF692 family iron enzyme, and MbnC, a protein from a previously unknown family, performs a dioxygen-dependent four-electron oxidation of the precursor peptide (MbnA) to install an oxazolone and an adjacent thioamide, the characteristic methanobactin bidentate copper ligands. MbnB and MbnC homologs are encoded together and separately in many bacterial genomes, suggesting functions beyond their roles in methanobactin biosynthesis.


Assuntos
Cobre/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/biossíntese , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Genoma Bacteriano , Imidazóis/química , Imidazóis/metabolismo , Ligantes , Methylosinus trichosporium/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Oxirredução , Oxigênio/metabolismo , Conformação Proteica em alfa-Hélice , Multimerização Proteica
17.
ISME J ; 12(8): 2086-2089, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29330532

RESUMO

Methanotrophs synthesize methanobactin, a secondary metabolite that binds copper with an unprecedentedly high affinity. Such a strategy may provide methanotrophs a "copper monopoly" that can inhibit the activity of copper-containing enzymes of other microbes, e.g., copper-dependent N2O reductases. Here, we show that methanobactin from Methylosinus trichosporium OB3b inhibited N2O reduction in denitrifiers. When Pseudomonas stutzeri DCP-Ps1 was incubated in cocultures with M. trichosporium OB3b or with purified methanobactin from M. trichosporium OB3b, stoichiometric N2O production was observed from NO3- reduction, whereas no significant N2O accumulation was observed in cocultures with a mutant defective in methanobactin production. Copper uptake by P. stutzeri DCP-Ps1 was inhibited by the presence of purified methanobactin, leading to a significant downregulation of nosZ transcription. Similar findings were observed with three other denitrifier strains. These results suggest that in situ stimulation of methanotrophs can inadvertently increase N2O emissions, with the potential for increasing net greenhouse gas emissions.


Assuntos
Imidazóis/farmacologia , Methylosinus trichosporium/metabolismo , Óxido Nitroso/metabolismo , Oligopeptídeos/farmacologia , Pseudomonas stutzeri/efeitos dos fármacos , Transporte Biológico , Cobre/metabolismo , Imidazóis/metabolismo , Methylosinus trichosporium/química , Methylosinus trichosporium/genética , Oligopeptídeos/metabolismo , Oxirredução , Pseudomonas stutzeri/metabolismo
18.
Appl Microbiol Biotechnol ; 101(23-24): 8499-8516, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29032471

RESUMO

In aerobic methanotrophs, copper and cerium control the expression and activity of different forms of methane monooxygenase and methanol dehydrogenase, respectively. To exploit methanotrophy for the valorization of methane, it is crucial to determine if these metals exert more global control on gene expression in methanotrophs. Using RNA-Seq analysis we compared the transcriptome of Methylosinus trichosporium OB3b grown in the presence of varying amounts of copper and cerium. When copper was added in the absence of cerium, expression of genes encoding for both soluble and particulate methane monooxygenases varied as expected. Genes encoding for copper uptake, storage, and efflux also increased, indicating that methanotrophs must carefully control copper homeostasis. When cerium was added in the absence of copper, expression of genes encoding for alternative methanol dehydrogenases varied as expected, but few other genes were found to have differential expression. When cerium concentrations were varied in the presence of copper, few genes were found to be either up- or downregulated, indicating that copper over rules any regulation by cerium. When copper was increased in the presence of cerium, however, many genes were upregulated, most notably multiple steps of the central methane oxidation pathway, the serine cycle, and the ethylmalonyl-CoA pathway. Many genes were also downregulated, including those encoding for nitrogenase and hydrogenase. Collectively, these data suggest that copper plays a larger role in regulating gene expression in methanotrophs, but that significant changes occur when both copper and cerium are present.


Assuntos
Cério/metabolismo , Cobre/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Aerobiose , Oxirredutases do Álcool/biossíntese , Meios de Cultura/química , Perfilação da Expressão Gênica , Methylosinus trichosporium/efeitos dos fármacos , Methylosinus trichosporium/crescimento & desenvolvimento , Oxigenases/biossíntese , Análise de Sequência de RNA
19.
FEMS Microbiol Lett ; 364(13)2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28854685

RESUMO

Soluble methane monooxygenase (sMMO) from methane-oxidising bacteria can oxygenate more than 100 hydrocarbons and is one of the most catalytically versatile biological oxidation catalysts. Expression of recombinant sMMO has to date not been achieved in Escherichia coli and so an alternative expression system must be used to manipulate it genetically. Here we report substantial improvements to the previously described system for mutagenesis of sMMO and expression of recombinant enzymes in a methanotroph (Methylosinus trichosporium OB3b) expression system. This system has been utilised to make a number of new mutants and to engineer sMMO to increase its catalytic precision with a specific substrate whilst increasing activity by up to 6-fold. These results are the first 'proof-of-principle' experiments illustrating the feasibility of developing sMMO-derived catalysts for diverse applications.


Assuntos
Methylosinus trichosporium/enzimologia , Mutagênese , Oxigenases/genética , Oxigenases/metabolismo , Biocatálise , Biotecnologia , Metano/metabolismo , Methylosinus trichosporium/genética , Mutação , Oxirredução , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
Appl Microbiol Biotechnol ; 101(9): 3871-3879, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28108763

RESUMO

Gene expression in methanotrophs has been shown to be affected by the availability of a variety of metals, most notably copper regulating expression of alternative forms of methane monooxygenase. Here, we show that growth substrate also affects expression of genes encoding for enzymes responsible for the oxidation of methane to formaldehyde and the assimilation of carbon. Specifically, in Methylosinus trichosporium OB3b, expression of genes involved in the conversion of methane to methanol (pmoA and mmoX) and methanol to formaldehyde (mxaF, xoxF1, and xoxF2) as well as in carbon assimilation (fae1, fae2, metF, and sga) decreased when this strain was grown on methanol vs. methane, indicating that methanotrophs manipulate gene expression in response to growth substrate as well as the availability of copper. Interestingly, growth of M. trichosporium OB3b on methane vs. methanol was similar despite such large changes in gene expression. Finally, methanol-grown cultures of M. trichosporium OB3b also exhibited the "copper-switch." That is, expression of pmoA increased and mmoX decreased in the presence of copper, indicating that copper still controlled the expression of alternative forms of methane monooxygenase in M. trichosporium OB3b even though methane was not provided. Such findings indicate that methanotrophs can sense and respond to multiple environmental parameters simultaneously.


Assuntos
Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Methylosinus trichosporium/efeitos dos fármacos , Methylosinus trichosporium/genética , Formaldeído/metabolismo , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/crescimento & desenvolvimento , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...